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Verification of Algebra Step Problems: 

A Chronometric Study of Human Problem Solving* 

PAUL G. MATTHEWS AND RICHARD C. ATKINSON 

Stanford University, Stanford, California 94305 

A class of simple problem solving tasks requiring fast accurate solutions is introduced. 
In an experiment subjects memorized a mapping rule represented by lists of words 
labeled by cue words and made true/false decisions about conjunctions of propositions 
of the form “Y is in the list labeled by X,” written “X +- Y”. Response times are 
analyzed using a “stage modeling” technique where problem solving algorithms are 
composed using a small set of psychological operations that have real time characteristics 
specified parametrically. The theoretical analysis shows that response time performance 
is adequately described in terms of the sequential application of elementary psycho- 
logical operations. Unexpectedly, it was found that the proposition “X -+ Y and 
X -+- Z” was verified as quickly as the apparently simpler “X -+ Y”. A case is 
presented for the modeling technique as applied to memory and problem solving tasks 
in terms of theoretical parsimony, statistical simplicity, and flexibility in investigative 
empirical research. Suggestions are made as to possible theoretical relations among fast 
problem solving, more complex and slower problem solving, and research in funda- 
mental memory processes. 

The dominant theoretical approach to the analysis of problem solving has been to 
construct a formal model, often in the form of a computer program, that simulates 
some qualitative aspects of human problem solving performance such as the protocol 
sequences observed in deriving logic theorems (Newell & Simon, 1972). In these 
analyses emphasis is placed on the integration of elementary information operations 
into a problem solving algorithm while less attention is given to the elementary opera- 
tions themselves. An approach that has been relatively less well explored is to specify 
the processing time implications of proposed algorithms and to determine whether 
observed human response times (RT’s) are consistent with the predicted pattern. 
From a statistical point of view, problems that require several minutes to solve or 
involve extensive searching for a solution (e.g., looking for the best move in a chess 
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position, de Groot, 1965) might be expected to have large RT variances even for 
an individual subject such that it becomes impractical to model the fine details of RT. 
However, for simple problems where human subjects are easily able to respond cor- 
rectly in a matter of a few seconds, it should be possible to verify the processing time 
predictions of specific problem solving algorithms. 

One method for deriving RT predictions is to describe problem solving algorithms 
in terms of the sequential application of a set of basic psychological operations (proce- 
dures, subroutines, or “stages”) each of which requires real processing time and has 
some probability of producing an error. Leaving the details for later discussion, the 
theoretical RT for an algorithm applied to a particular problem can be described as the 
sum of the processing times of the operations applied and the error rate is roughly 
one minus the product of the correct probabilities of these operations. An alternative 
technique for making RT predictions is to assign computational complexity measures 
to the basic operations and to derive the complexity of an algorithm as the sum of the 
complexities of its component operations; computational complexity is then directly 
interpreted as linearly related to theoretical mean RT. This complexity assignment 
method yields the same description of mean RT’s as does the corresponding stage 
model although it does not describe higher RT moments. Note that both methods are 
easily generalized to take account of the possibility of mixed (randomized) strategies for 
applying available algorithms. 

On a general theoretical level, the RT analysis of fast accurate problem solving can 
be a valuable source of evidence in deciding on a set of basic psychological operations 
used in human problem solving. The case is similar to that for chronometric studies of 
linguistic comprehension (Chase & Clark, 1972), where alternative representations of 
propositions can sometimes be discriminated by constructing RT models for processing 
propositions to make true/false decisions. For problem solving theories it is desirable 
to build algorithms working with a set of elementary operations which have some 
preferred characteristics, such as corresponding to procedures or subroutines that can 
be conveniently written as logical units when programming in a particular language, 
or being general in the sense that the same set of operations can be used in solving 
several types of problems. Another preferred characteristic is that the set of operations 
has “psychological validity” insofar as real time processing aspects of the operations 
can be defined and verified in observed RT performance. 

ALGEBRA STEP PROBLEMS 

To pursue these ideas an experimental task was sought where subjects would learn 
a set of rules (e.g., the moves of pieces in a board game, or a mapping of one set of 
objects into another) and be required to solve true/false problems by repeated applica- 
tion of these rules. It was thought that a model for the single application of a rule 
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could then be extended to a model for the entire problem solving task by specifying 
the way rules were applied to solve a problem. 

Consider a small finite set X and a rule that assigns to each element of X a subset 
of X. Such a rule can be written in the form of a transition table such as that in Fig. 1 

x4-x1 , x5 

X5-G > x2 

%--X3 9 x4 

X7--% , x4, X8 

x&l--x9 , x3, xc8 

%--X6 1 x7 9 Xl 

FIG. 1. ASP transition table. 

which was used in an experiment to be described later. A memorized transition table, 
say where X is a set of consonant-vowel-consonant (CVC words, might be represented 
as “lists” in some memory store with “addresses” corresponding to the elements of X. 
One of the most basic propositions that can be made about a particular transition table 
is that xi is mapped into a list that contains xj , written xi +- xj as a mapping diagram, 
where xi and xi are variables standing for elements of X; this proposition is either true 
or false. A subject who has memorised a transition table can be presented with the 
proposition xi -+- xj and be required to make a true/false decision using his knowledge 
of the rule as defined by the table. In the experiment to be described, subjects were 
presented with logical “and” conjunctions of these simple propositions and RT’s for 
a true/false decision were measured. The propositional forms or problem types used are 
listed in Fig. 2 in three groups (A, B and C) according to the geometric shapes of the 
mapping diagrams. A problem is true if and only if all the propositions represented 
by the arrows or links are true; if just one link is false then the problem is false. For 
example, P(---) in Fig. 2 is true only if xi -t-x? and xi--+-xk and xlc-+xL; itis 
false if any one of these propositions is false. Similarly, P(-<) is true only if xi +- xj 
and xj --+ xlc and xj +- x1 ; and P( >-) only if xi +- xk and xj - xlc and xR -+- xI . 

In the experiment subjects memorized transition tables of the form represented in 
Fig. 1 where the elements of X were CVC words, and were tested with problems of the 
sort illustrated in Fig. 2. Representing a transition table in memory as stored lists, an 
individual link, xi -- xi , could be verified true or false by using the cue xi to “access” 
the appropriate list in memory and then “scanning” the probe xi against this list for 
a “match”; if a match is obtained then the link is true and otherwise false. A model 
for the verification of the conjunctive propositions could then be obtained on the 
assumption that verification proceeds one link at a time in some specified order. These 
notions are developed in the discussion section below. Since it is possible to verify 
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Problem type Mopping diogrom 
I  

(A) 

P L-1 Xi---X, 

P (--I Xi-xlcxk 

P I---) xi-x]-$,-xe 
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w ;>xk 

PW ;>xk-+xa 

FIG. 2. ASP problem types. 

mapping diagrams by checking each link in a step by step manner, the test items used 
in this task are referred to as algebra step problems (ASP). 

ASP items for each problem type were selected from a computer generated listing 
of all possible items given the transition table (Fig. 1) such that within each problem 
type there were an equal number of true and false items. For false problems exactly 
one link was false, and for each type the false link occurred with equal frequency at 
each link position. In addition an effort was made to match the frequencies of occur- 

rence of CVC words between true and false items within each problem type so 
as to avoid a possible source of response bias. The total pool of about 400 distinct 
items was divided into four blocks; the same P(-) items occurning in each block but 
otherwise there was no overlap. Denoting blocks by B, , B, , B, , B, , subjects were 
tested over six sessions with one block per day in the order B,B,B,B,B,B, , where 
blocks and trials within blocks were randomised for each subject individually. A set of 
nine CVC words was randomly assigned to the abstract transition table scheme for each 
subject: no two subjects had identical transition tables although all tables had the 

same formal structure. 
The experiment was run using an Imlac Corporation PDS-1 cathode ray tube (CRT) 

display and keyboard, interfaced with a PDP-10 computer. Six female subjects ran for 
seven sessions; the first session was devoted to a transition table learning drill (subjects 
did not memorize their transition tables prior to the first session), and the remaining 
six sessions were used for ASP test items. On a single trial of the drill a cue word was 
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presented on the CRT and the subject was required to type the appropriate list in 
serial order (since the CVC words used had unique initial consonants, the subject 
typed only the first letter of each word and the computer completed the words with 
suitable horizontal spacing). On completing her response to a cue the subject pressed 
the keyboard spacebar and the correct list was printed horizontally directly beneath 
the typed response, providing feedback and an opportunity for study. Permutations of 
the nine cue words were run and following each permutation the subject was told her 
percentage of correct responses and the time taken to respond to all the cues. Subjects 
were required to participate in the drill until they could consistently achieve perfect 
accuracy with a response time under 25 set; all subjects met this criterion within 
3&50 min of the drill. 

In the problem sessions ASP items were displayed at the center of the CRT and 
subjects responded true/false using two keys on the lower row of the keyboard. The 
subject initiated trials by pressing the spacebar following a ready signal. Items were 
preceded by a 1 set duration fixation cross and appeared just to the right of the cross, 
remaining on the screen until the subject responded. Immediately after responding 
subjects received a feedback message indicating correctness and response time. 

Before the first problem session subjects were shown examples of the seven problem 
types and told to respond “true” if and only if all the links in an item were true and to 
respond “false” as soon as they knew that one link was false. Subjects were informed 
that there were an equal number of true and false items within each problem type on 
each day and that false items had exactly one false link which was equally likely to occur 
in any position. On the first day of problems subjects were instructed to be completely 
accurate for the initial 30 or 40 trials and then to increase their speed as they got a 
feeling for the task. For subsequent testing sessions subjects were instructed to respond 
as quickly they could without making more than about one error in 20 trials on average. 
Subjects were explicitly instructed never to guess and never to “think twice” about 
their response once they had made a decision. 

EXPERIMENTAL RESULTS 

To eliminate early practice effects and to facilitate the observation of stable task 
strategies the data for each subject from the first of the six testing sessions was discarded 
together with the first ten trials of the remaining five sessions, yielding on the order of 
550 trials per subject. Only correct RT’s excluding outliers were analysed. Correct RT 
histograms were plotted separately for each problem type, for both true and false 
responses, and for each subject to identify possible outliers. Response times falling 
more than 1 set above the main distribution as determined by the mode and the 
contiguous tails were eliminated; such outliers constituted about 2% of the correct 
RT data. 
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Due to the complex description of the ASP items it is not possible to represent all 
aspects of the data simultaneously in a single graph or table. However, by collapsing 
across various subsets of the data we can obtain a reasonable picture of major effects 
which can then direct more detailed modeling and statistical evaluation. Since plots of 
data for individual subjects showed subjects to be qualitatively comparable, the RT 
data for all six subjects were pooled to simplify the presentation of results. Table I 
presents RT and error rate data classified by problem type and position of the false 
link (if any). The notation P(---) TTF indicates that the third link from the left was 
false; P(>-) FTT that the upper link of the branch (>) was false; P(-<) TTF that 
the lower link of the branch (<) was false. Observed means and variances and theo- 
retical means (derived from a statistical model introduced below) are averages across 
subjects weighted by the numbers of correct RT’s observed. 

TABLE I 

Group RT Means and Errors! 

Twe 
False 
link 

Obs Th 
mean mean 

(msec) (msec) 

Obs ’ 
SD Error Total 

(msec) (%I 09 

w-1 
PC-1 
PC--) 
w-) 
w-9 
P(---) 
P(---) 
P(---) 
P(---) 
pt-4 
PC4 
PC4 
w-4 
v-4 
w-4 
P(-4 
PC>) 
PC>) 
PC>) 
P(>-1 
P(>-1 
P( >-) 
P(>-1 

T 1576 1529 590 5.6 245 
F 2041 1993 741 5.3 243 
TT 2468 2541 905 2.3 251 
FT 2101 1842 862 7.8 117 
TF 3161 3187 1035 3.8 121 
TTT 3631 3584 1103 4.3 388 
FTT 2137 1871 949 7.5 121 
TFT 3374 3086 1252 6.7 125 
TTF 4184 4046 1106 10.5 121 
TT 1580 1567 532 4.5 161 
FT 2287 2068 815 8.3 75 
TF 2152 2014 964 3.0 88 
TTT 2592 2534 933 4.3 328 
FTT 1950 1825 994 10.2 112 
TFT 2972 3001 895 5.9 108 
TTF 2864 3000 858 6.8 112 
TT 2575 2610 752 5.1 121 
FT 2501 2211 835 5.0 63 
TF 3002 2876 735 3.1 61 
TTT 3657 3539 1045 3.7 237 
FTT 2622 2406 1146 4.2 78 
TFT 3342 2990 1169 6.7 79 
TTF 4002 4153 1060 1.7 73 

o By problem type and position of false link. 
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Figures 3 and 4 are based on the data of Table I; curves represent theoretical mean 
RT. Figure 3 plots true and false mean RT by problem types. A striking feature about 
these data are the following approximate equalities of mean RT’s obtaining among the 
problem types: 

P(<) = P(-) and P(-<) = P(--) 

P(>) = P(--) and P(>-) = P(---). 

Of course these equalities hold among averages including quite distinct items within 
each problem type, but they do suggest that the time to verify a left branch configura- 
tion (<) is not substantially different from the time for a simple link (-). In contrast, 
verifying two links in the (>) configuration appears to take the same time as two links 

0 True 
0 False 

01 ’ I I I I I I 
P(-) Pi--) Pi---l P(c) PW) Pi>) P(>-) 

Problem Type 

FIG. 3. Mean correct RT’s plotted by problem type and true/false. (Points are data and 
curves are theoretical.) 

I ’ I , I I I 
F T T  T F T  T T F  F T T  FT(< ) TFi<I 

Pmtion of False Link 

. Pi>-1 
0 P(>) 

I I I 
F T T  T F T  T T F  

FIG. 4. Mean correct RT’s for false items plotted by problem type and position of false link. 
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in the (--) configuration. In what follows the (<) configuration will be referred to as 
a double probe link and (-) as a sir&e probe link. 

Within each of the problem groups RT increases with the number of links. If a 
sequential processing of links is assumed then the slopes of the true curves directly 
reflect the average time taken to verify that a link is true. Note that the three true curves 
plotted in Fig. 3 have approximately the same slopes, which together with the equalities 
remarked above is consistent with a sequential processing account. A way to investigate 
order in sequential processing is to examine false RT’s for each problem type in a 
group as a function of the position of the false link assuming that subjects responded 
“false” as soon as they discovered a false link. Figure 4 illustrates graphically this 
order of processing analysis. Figure 4a shows that for group A problems RT increases 
as the false link is moved from the first to the third position with a slope about the same 
as the true slopes in Fig. 3: this indicates a strict left/right processing order. Figure 
4b shows that for P(-<) the tail link (-) is almost always verified before the left 
branch (<), while within the branch there is no strong up/down processing order. 
This is interpreted as consistent with the proposal that the double probe link is 
verified in one step (i.e., not as separate simple links) which implies that there 
should be no up/down processing order as such. Figure 4c presents a more complicated 
story for group C. While link processing for this group tends to be up/down on the 
right branch (>) and branch (>) before tail (-) ( i.e., left/right) in P(>-), this order 
cannot be strict since the RT slopes as the false link position moves are noticeably less 
than the true slopes in Fig. 3. A probabilistic order of processing is appropriate for 
group C problems. 

The verification of a link is in some respects similar to memory scanning tasks 
(Sternberg, 1969a) that require subjects to decide whether a probe symbol is contained 
in a memorized set of symbols. For an ASP transition table the number of elements 
in a list labelled by a cue word is referred to as the cue set size; Fig. 5 plots true and 

I I I 

I I I I 
I 2 3 

Cue Set Size 

FIG. 5. Mean correct RT’s for problem type P(-) plotted by cue set size and true/false. 

4W3b7 
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false RT’s for P(-) by cue set size to illustrate set size effects analogous to those found in 
memory scanning tasks. The true and false curves are separated by a constant, sug- 
gesting a simple additive effect on RT of the process differences between true and false 
link verifications. 

Errors were infrequent under the speed/accuracy instructions given the subjects; 
the error rate over all conditions and subjects was 5.2 percent. Group error rates broken 
down by problem type and position of the false link are presented in Table I. While the 
authors recognize the possibility of important theoretical relations between response 
times and error rates as for example suggested by Pachella (1974) among others, a 
rigorous analysis relating the two was not performed for the data presented here. This 
omission is partly justified by the empirical observation that while mean RT’s showed 
a consistent pattern across subjects, error rates did not. Also, from purely statistical 
considerations when data is so finely classified that some classifications have twenty or 
fewer observations, error rates may not be sufficiently reliable for the analysis of data 
from an individual subject whereas RT’s may still be meaningful in providing insight 
into psychological processes. 

THEORETICAL ANALYSIS 

Suppose that for a particular ASP item we have been given a description of the 
sequence of psychological operations used to solve it. The stage modeling technique 
to be used here assigns to each operations or stage, S, of the processing a tuple of 
parameters, 

MS), 4w, 

corresponding to the theoretical mean and variance of processing time associated with 
that stage. In cases more general than that considered here this tuple may become a 
family of tuples corresponding to various states of the cognitive system that could 
exist when the stage operates (i.e., stages are specified conditionally) or tuples may 
contain additional parameters such as higher RT moments or the probability of a 
processing failure in that stage. If stages S, , S, ,... , S,,, are applied in sequence to 
process the item then the RT mean and variance for the item are simply, 

p.(RT) = f PC%) and as(RT) = 2 u”(S). 
i=l j=l 

The additivity of variance follows from the assumption that stage processing times are 
stochastically independent. Now suppose that there are two sequences of stages that 
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could be applied to the item, S,, , S,, ,..., S&, and Ss, , Ss, ,..., Ss,, , and that these 
two sequences are observed with probability p and (1 - p), respectively. Let, 

I4 = : d&j) and ui2 = 2 U2(Sij), i= 1,2. 
j=l j=l 

Then the mean and variance of the overall RT are 

P.(RT) = PP, + (1 -P)cL~, 

8RT) =pu12 + (1 -P> 4 +PU -P>(P~ - ~2)~. 

Without going into further detail, similar expressions can be derived whenever RT is 
assumed to arise from the probabilistic mixture of sequences of stages. 

Proceeding on the basis of the observations made in the Results section above, a 
stage model was constructed using a small number of inclusive stages that are identi- 
fiable (i.e., in the sense of unique parameter estimates) and that have direct theoretical 
interpretation. These stages are 

Stage 

V, 

W7Z 
K 

D 

Stage description 

verification of a single probe link with cue set size of ?E 

verification of a double probe link with cue set size of n 

orientation, attention, perception and miscellaneous 
set-up and bookeeping processes 

decision and response processes that differ between 
“true” and “false” responses. 

Processes involved in the verification of single and double probe links have been 
summed together in the V, and W, parameters, respectively. Due to the problem of 
identifying parameters it is not possible to make definitive interpretations of the 
stages K and D. The K stage includes all those operations which are in common across 
problem items, such as attending to the CRT display or executing the motor com- 
ponents of a keypress response; in addition, K may be regarded as incorporating 
incidental processes required for the logical completeness of the model such as 
recording the input and output of stage operations. Any processing differences between 
true and false responses, including handedness, are incorporated in the D stage. For 
the experimental data false responses are slower than comparable true responses; 
the D parameters reflect this aspect of the data. 

Derivation of Theoretical Expressions 

The derivation of expressions for theoretical RT means and variances will be 
illustrated by examples since there is insufficient space for an exhaustive treatment. 
In the following, let ni be the cue set size associated with the symbol xi. 
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EXAMPLE 1. x~-+-x~ (T). To solve this simplest problem the subject need 
only verify one link; hence, exactly the stages Vn6 and K occur. Then, 

EL(RT) = p(Q) + CL(K), 

a2(RT) = o”( KJ + n2(K). 

EXAMPLE 2. xi - xj - Xk -+-x1 (TFT). Assuming that P(---) has a strict 
left/right processing order, the subject first verifies that xi -+- xj is true and then finds 
that xi -+-- xlc is false; the subject responds “false” as soon as she finds this link so that 
only stages Vni , Vnj , K, and D occur. Then, 

/-@W = ,G’n,) + PKJ + P(K) + CL(D), 
02(RT) = u”(V,J + u”(V,~) + 02(K) + u2(D). 

EXAMPLE 3. xi+-xj 
I 

(TFT). 

It is assumed that the double probe link (<) is verified in a single operation, Waf , 
and that the tail (-) is checked before the branch (<), so that the stages are Vn, , 
Wnj , K, and D. Then, 

PW) = ,G’n,> + CL(WJ + 49 + P(D), 
02(RT) = u”(V,J + u”(W,,) + u2(K) + ~~(0). 

EXAMPLE 4. \ 
/ 

*k tFT). 

A probabilistic order of processing was suggested for types P(>) and P(>-). This 
order will be defined by two probability parameters. Let q be the probability that 
within a right branch (>) the upper link is checked before the lower link, and let r 
be the probability that for P( >-) the branch (>) is checked before the tail (-). In 
Example 4 the parameter Y is not involved. With probability q the stages are Fe< , K, 
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and D, and with probability (1 - 4) the stages are Vm,, Vmj, K, and D, with the 
result that 

P(W = /-VrJ + (1 - d PL(KJ + P.(K) + /JCL(D), 

u’(RT) = u”(Kzi) + (1 - q) u”(KJ + u2(K) + u2(D) + n(l - q)[ll(KJ12. 

The expression for u2(RT) is that for the probability mixture of two sequences of 
stages. 

EXAMPLE 5. 
\ 

/ 

xk -+- xl (TFT). 

7 
xi 

In Example 5, with probability rq the stages are Vsi , Vnf , K, and D; with probability 
~(1 - q), VT,: K, and D; with probability (1 - r)q, Vnk , Vni , VW, , K, and D; and 
with probabrhty (1 - r)(l - q), Vn, , Vn, , K, and D. Hence, 

P(RT) = wP’nJ + ~L(K~J + (1 - ~1 /-O’nJ + P(K) + P.(D), 
u2(RT) = qu2(KJ + +YK,) + (1 - y> u2P’,,> 

+ u2W + u2P) + n(l - dMK1)12 + 4 - ~bV’~In,)12~ 

The expression for o2(RT) is an algebraic simplification of a general expression. 

EXAMPLE 6. \ 

/ 
xk - xZ (TTT). 

Since all links are true, the same stages must occur whatever the order of processing. 
Consequently, 

P(RT) = /-4KJ + Nn,) + N’n,> + P(K), 
u2(RT) = u”(V,,) + u”(KJ + u”<KJ + u2(K). 

These examples should convey the gist of the statistical model. Note that for every 
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ASP item the theoretical RT mean and variance can be expressed in the following 
canonical forms: 

PW) = w(1/1) + adv2) + &1/3) + wWz) + wWJ + U,PW + 40 
02(RT) = q2( VI) + ~24 V2) + w2( V3) + a,&( w2> + a5u2( W3) + a,u2(K) 

+ u,u2(D) + b2. 

where the ai’s (; = I,..., 7) can be interpreted as the average number of times the 
corresponding stage occurs, and b2 is the “mixture variance” (i.e., the variance added 
by mixing processing strategies where strategies may require differing amounts of 
time). Writing the row vectors, 

the canonical forms become, 

p(RT) = aeT and o2(RT) = avT + b2 

where eT is the transpose of e, and vT is the transpose of v. For all true items and for 
false items in groups A and B, each ui is an integer and b2 = 0; for false items in 
group C the ai’s may be functions of q and r, and b2 > 0 is a function of e, q and r. 
Note that ASP items can be classified according to their coefficient vectors, a, and 
mixing variances, b’-; under the model this classification is a full specification of the 
items. For the items used in the experiment 46 such classification categories 
occurred. 

Statistical Evaluation 

A discussion of parameter estimation and statistical techniques is presented in the 
appendix. Best estimates of parameters were obtained for each subject by numerical 
methods using a quadratic loss function, and the fit of the model to the RT data was 
primarily evaluated by constructing simultaneous confidence regions containing all 
the RT means and variances predicted by the model. Parameter estimates are given 
in Tables II and III; statistics are listed in Tables IV and V. 

For the mean RT data the statistics in Table IVA show that while the model does 
account for a substantial percentage of the between and total variances (PBV and PTV 
columns), the maximum modulus t test applied to the group suggests that the model is 
probably not a complete account of the data for every subject in the experiment 
(g* for the group is .004 which is the probability of observing a t* value of 4.44 or 
greater). In Table IVA two of six subjects have g* > .lO indicating a good fit of the 
model for these individual data, and in Table IVB g* > .lO for three subjects. The 
third column of Table IV gives the number of points lying outside a 30 simultaneous 
confidence interval; any such point implies that g* < .10. 
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TABLE II 

Parameter Values, Averaged Estimatesa 

Stage 
P 

(msec) 
D 

(msec) 

Single probe (-) verification: 

Cue set size 1 Vl 676 241 
Cue set size 2 v2 1169 446 
Cue set size 3 v3 1146 563 

Double probe (<) verification: 

Cue set size 2 w2 924 365 
Cue set size 3 w3 1206 412 

Set-up processes K 446 210 
True/false difference D 466 200 

D Probability of up before down on (>), q = 0.85; probability of (>) before (-) on (>-), 
r = 0.89. 

TABLE III 

Parameter Values, Individual Subjects 

Subject 1 Subject 2 Subject 3 
~~ 

P 0 P * P D 

VI 878 566 449 3 571 0 
JrZ 1545 676 867 293 1001 450 
v3 1587 720 913 593 775 446 
w2 968 575 789 399 748 398 
w3 1144 442 986 421 768 284 
K 475 1 545 1 394 0 
D 729 1 346 489 452 0 

4 0.79 1.00 0.78 
1 0.88 0.48 1.00 

Subject 4 Subject 5 Subject 6 

Vl 956 0 594 259 607 532 
v2 1375 671 1430 635 798 230 
v3 1348 729 1271 646 980 636 
w2 1156 689 1045 31 838 78 
w3 1582 720 1455 485 1301 88 
K 292 1 462 307 506 414 
D 459 1 302 2 506 1 

9 0.61 0.92 1.00 
I 1.00 0.99 1.00 
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TABLE IV 

Statistical Analysis for RT Means 

Subject t* g” 

Points 
outside 

90 o/o region PBV PTV 

1 4.44 
2 2.78 
3 3.32 

4 4.44 
5 3.86 
6 2.84 

Group 4.44 

I 
2 

3 
4 

5 
6 

Group 

B. 

3.28 
1.74 

2.42 
3.01 
3.44 

2.67 
3.44 

A. Model classification (46 points) 

0.000 2 79.7 
0.182 0” 76.7 
0.029 2 78.6 
0.000 1 19.3 

0.007 2 57.1 
0.157 0” 68.7 
0.004 3 73.5 

Type X false link classification (23 points) 

0.014 1 85.6 
0.697 0* 84.3 
0.198 0* 89.5 
0.036 1 83.7 
0.008 1 64.5 
0.101 0* 71.0 
0.049 2 79.8 

42.7 
35.6 
40.7 

36.5 
28.1 
27.8 
35.2 

41.5 

32.1 
37.3 
35.8 

26.6 
24.5 
33.0 

TABLE V 

Statistical Analysis for RT Variances” 

Subject t* &?* 

Proportion 
model vs 
“same” 

1 0.83 0.999 0.478 
2 0.63 0.999 0.500 
3 1.00 0.999 0.348 
4 1.07 0.999 0.522 
5 0.85 0.999 0.478 
6 0.56 0.999 0.391 

a Model classification, 46 points. 
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Table V presents statistics for RT variances. Due to large sampling variability of 
variance estimates, the g* statistics are not very informative since many models 
would be acceptable within wide limits of variability. The third column of Table V 
compares the model to the hypothesis that all RT variances are the same, in terms of 
the proportion of points for which the model makes a more accurate prediction. 
Evaluated using this statistic the model does no better than the “same” hypothesis 
although both are acceptable given the variance of estimators. Since the averaged RT 
variance parameters presented in Table II appear to be orderly they will be discussed, 
although no strong conclusions should be drawn. 

DISCUSSION 

Stage modeling has been conceived of in terms of a formal processing language 
description of memory operations: stages are analogous to procedures or subroutines, 
perhaps probabilistic in their execution, organized by call sequences into memory 
processes. Within such a stage modeling framework various levels of detailed descrip- 
tion are possible. For example, one might consider macro stages such as “perception,” 
“memory,” and “response,” or comparatively micro stages such as “input the symbol 
in position p of the stimulus array” or “compare the code for symbol X with the code 
for symbol Y.” No particular level of detail can be regarded as preferred: theoretical 
descriptions in stage terms must be evaluated with respect to the relevant data. How- 
ever, the stage modeling framework does in principle relate all levels of description in 
terms of the nesting of procedures in call sequences, thus providing the possibility 
of consistently treating the results of simple and relatively more complex laboratory 
tasks with the same overall processing model (Atkinson & Wescourt, 1975). 

A stage model can be most productively regarded as a rational basis for the construc- 
tion of statistical models. Each statistical model stemming from a stage model can be 
evaluated with respect to the data, successes and failures yielding new information 
about the data possibly not apparent on inspection or available from other analyses. 
In general it is not necessary that every statistical model derived from a particular 
processing language description be “successful,” but only that some are, and that these 
provide a useful characterization of the data. Of course, if a stage model were taken as 
a literal model of a specific real time process, say specific interactions among brain 
centers and layers of brain tissue, it would be important to verify all the statistical 
models derived from the stages theory. However, for the analysis of cognitive perfor- 
mance the authors regard stage models as nonliteral information processing descriptions 
from which statistical analyses are derived that provoke a deeper and more adequate 
characterization of patterns present in the data. 

The statistical models for RT means and variances developed above may be regarded 
as an intermediate level of stages analysis appropriate to the level of observable data: 

480/13/z-8 
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It does not explicitly describe either the component processes of individual link 
verifications or the overall control structure in which the problem solving algorithms 
are embedded. Since these additional levels of analysis are of theoretical interest, the 
discussion will turn to bridging these conceptual gaps. The following stages analysis 
of single and double probe link verification is given: 

LO 
Ll 
h? 
LS 
JL 
L5 
43 

4 
Ls 
L9 

determine whether single or double probe (s or d) 

input cue 
access memory list associated with cue 

input probe 1; if d, then input probe 2 

reset match register 1; if d, then reset register 2 

unpack an element from the memory list 

match the element against probe 1 and increment match register 1 by the value 
of the “goodness-of-match”; if d, then match against probe 2 and increment 
register 2 

if the entire list has been unpacked then continue, else return to L, 

if d, then add match register 2 to register 1 
if s, then if the value of match register 1 exceeds a criterion c, then return true, 

else return false; if d, then if the value exceeds cd return true, else return false 

Note that the analysis is essentially an “exhaustive scan” model, where matching 
is not necessarily all-or-none, and where the representation of lists in memory and the 
coordinate retrieval or unpacking process may be more involved than reading from 
a list of symbols at a uniform rate. Representing a list as a cluster of symbols bound to 
a memory node by associative linkages and defining retrieval processes in terms of this 
representation would be one way of conceiving of an unpacking operation with more 
complex characteristics, although such “built-in” characteristics may have limited 
conceptual and theoretical interest. 

The claim is that this model of link verification is consistent with the stage parameter 
estimates in Table II; for the sake of simplicity only the average values of parameter 
estimates are discussed. The parameter values in Table II may be qualitatively sum- 
marized as follows: 
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This summary can be regarded as a hypothesis that, within the sampling variability 
of the parameter estimates, is not disconfirmed. A problematic aspect of this summary 
is that #‘z> < p( I’s) by 245 msec, yet p( Ws) = p( Vs). This result may be attri- 
butable in some way to the fact that for W, the number of probes is the same as the cue 
set size, but in the absence of additional controls no ad hoc explanations are offered. 

If it is assumed that stages L, , L, , and L, account for the major part of link verifi- 
cation time, then a gross similarity would be predicted between single and double 
probe links. With suitably complex representations of lists the mean unpacking time 
for lists of lengths 2 and 3 may be comparable, yielding p( I’s) = p( Vs); the speed of V, 
could be explained by the simplicity of the representation for a list with a single symbol 
requiring fewer unpacking manipulations. 

Single and double probe link verifications differ in stages L, and L, . If the matching 
process is probabilistic (e.g., due to variable imperfect coding of symbols) then the 
final match value in register 1 will be distributed differently for single and double 
probes (e.g., double probes will have greater mean and variance for both true and false 
links). This, together with the two criteria, c, and cd, might account for decision 
component differences in ways similar to signal detection models that relate RT to 
criteria placements in relation to signal and noise distributions (Thomas, 1971). The 
observed u’( W,) < cG( I’s) and u2( W,) < u”( V,) are interpreted as due to such differen- 
tial effects in stage L, . 

The value p(D) = 466 is greater than would be expected on the basis of handedness 
alone, suggesting genuine decision component differences; again this is interpreted as 
a stage L, effect. Since successive link verifications are required by some ASP items, in 
order to achieve an acceptable error rate (subjects were instructed to be accurate) it is 
necessary to make a more accurate decision for each intermediate verification than 
would be needed if only a single link were verified on each trial. Also, since over all 
items there are more true than false links, stage L, might be “tuned” for a true verifica- 
tion. The demand for increased accuracy together with a true verification expectancy 
could account for the observed value of p(D). The apparent constancy of p(D) over 
problem types, even those where only one link is verified, is consistent with the theo- 
retical conception that the same link verification mechanisms are used for all problems 
without modification according to problem type. From these considerations it would 
be predicted that encouraging speed over accuracy, using only single link problems, 
reducing the variety of ASP items used within an experiment, or using multilink 
items with more than one false link would all have an effect in reducing the 
value of p(D). 

As an aside, it may be possible to use an empirical speed/accuracy tradeoff to further 
investigate the verification mechanisms found in the ASP task. A direct implication of 
the theory discussed above is that under speed instructions each link verification will 
be less accurate as processing is modified for speed or cut short, with the results that 
errors will tend to increase relatively more for items with many links compared to 
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those with few, and that error RT’s for multilink true items will decrease relative to 
correct RT’s while error RT’s for multilink false items will increase. Other, quite 
different effects of speed instructions might be to induce subjects to implement faster 
problem solving algorithms, say with some sort of simultaneous verification of links, 
to “prime” access to certain algorithms and retrieval mechanisms in anticipation of 
the next problem, or to adopt sophisticated guessing strategies. The issues with regard 
to speed/accuracy effects in ASP problem solving are manifold and may perhaps be 
most productively approached by comparing results across experiments to determine 
what effects might be present. 

In stage terms a stable strategy is a problem solving algorithm that is not modified 
with use. Empirically, stable strategies would be expected for practiced subjects who 
have in some sense developed optimal task techniques, with the required amount of 
practice depending on the particular task. The present experiment was designed to 
observe only asymptotic performance, making it in principle possible to specify a 
single set of algorithms or strategies governing the processing of ASP items. A theory as 
to how these strategies are set up with practice is not developed here; however, the 
authors do conceptualize an interactive feedback system where the state space of the 
system consists of algorithms and the effects of control inputs are to rebuild algorithms. 
It is proposed that for tasks where alternative processing strategies are a genuine theore- 
tical possibility, it may be more appropriate to analyze data from trials early in the 
experiment in terms of a mixture of strategies rather than a single stable strategy. 
For the sake of completeness of theoretical conception it is assumed that the strategies 
for the various problem types are called by a controlling stage that on each trial identi- 
fies the problem type on the basis of its mapping diagram configuration and calls the 
corresponding problem solving algorithm. 

Additional empirical work is required to evaluate these conceptual analyses of control 
and component processes. For example, one line of experimentation would be to 
examine more thoroughly ASP verification problems, with manipulations of the 
transition table and problem types. Another line would be to examine ASP problems 
more complex than verification, with the idea that such tasks could reveal more about 
the construction of strategies, that is about how component processes are used to build 
problem solving algorithms. Alternatively, the verification of isolated single and double 
probe links could be examined in greater experimental detail. All these levels of experi- 
mental investigation are well integrated within the stage modeling framework, which is 
one of the main theoretical motivations for using such a framework as a basis for data 
analysis. 

From a theoretical standpoint a close relationship exists between link verification 
and some memory scanning tasks. In both cases a probe item must in some sense be 
compared against a list of symbols in memory to determine if the probe is a member 
of the list. A point of interest is whether memory scanning mechanisms that have been 
investigated in the laboratory can be identified as components of relatively more 
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complex tasks such as solving ASP verification problems. The model constructed for 
the ASP problems investigated in this paper can be regarded as an attempt to tackle 
this issue. About the simplest relation that could obtain between memory scanning and 
ASP problem solving would be that the scanning mechanisms engaged by strategies 
to yield intermediate results have the same characteristics as those observed with simple 
memory scanning tasks. Yet this need not be so. It is conceivable that as strategies for 
the more complex storage, retrieval and decision making required by ASP problems 
are constructed in the memory system (Atkinson & Wescourt, 1975), new demands 
for rapid access to a larger volume of stored information, for the recording of inter- 
mediate results which direct further processing, and for controlling error rates when 
intermediate results are combined or cascade in a final decision demand scanning 
mechanisms having different characteristics. The data from the present experiment are 
not in themselves conclusive, but the parameter values of Table II as discussed above 
suggest that the inferred scanning (link verification) mechanisms and decision processes 
yield values of RT parameters that differ from those typically found in the memory 
scanning literature. There is the unexpected result that verifying a double probe link 
is as fast as verifying a single probe link; the fact that for single probe links verification 
times for cue set sizes 2 and 3 do not differ from each other but are dramatically 
different from the verification time for cue set size 1; and the unusually large constant 
difference between true and false RT’s. Each of these effects is of course subject to 
further investigation and taken one at a time are not without some parallel in the 
memory literature, but the authors believe that they provoke an examination of the 
issue of how memory scanning mechanisms relate to the larger human memory 
system. It is fair to say that proportionally more effort has been devoted to unraveling 
the effects of experimental manipulations on basic memory scanning tasks and con- 
structing sophisticated and interesting models for these data (e.g. Theios, 1972; 
Anderson, 1973; Shevell & Atkinson, 1974) than has been devoted to examining the 
possible roles of memory scanning mechanisms in human memory systems that are 
sufficient to support more involved cognitive processing. 

The stage model developed for the experiment described here characterized each 
stage by two parameters, the mean and variance of processing time; as remarked 
above, this type of model can be generalized to include more parameters such as the 
probability of an error in that stage or higher moments of the processing time distri- 
bution. Without changing the nature of the modeling technique, stage parameters 
could be expressed conditionally on the state of processing, as for example on the input 
to the stage from previously operating stages. Even with these generalizations, param- 
eter estimation and statistical procedures can be derived in a mathematically simpleway. 
Granted that it is one opinion, the authors feel that statistical methods such as those 
described in this paper that are based on a formal but flexible model of psychological 
processing should in many cases be both practical and more incisive than the standard 
linear statistical analyses often found in the memory and problem solving literature. 
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Comparison with Hayes’ spy problems 

Hayes (1965, 1966) has reported studies using a problem solving task similar to that 
of the ASP problems defined here. Subjects in Hayes’ experiments learned a list of 
“spy” names together with rules about which spies could talk to each other; the list 
of these “talking connexions” may be regarded as a transition table. In the basic 
experiment, subjects were given two spy names and required to find a chain of spy-to- 
spy communications conveying a message from the one spy to the other. Subjects were 
instructed to “think aloud” and their protocols were analyzed with respect to the 
overall time taken to solve a problem, the rate at which links in the communication 
chain were generated, and diversions into “blind alley” side chains (i.e., passing the 
message to a spy who did not have the connections to get it to the goal spy). Subjects 
were able to solve spy problems in a matter of a few minutes, occasionally entering 
side chains and usually achieving a solution chain longer than the minimal required 
chain; the reader is referred to the original papers for Hayes’ analysis of his results. 
In terms of the type of theory proposed here for ASP problems, the solution of spy 
problems would be described by algorithms constructed using a small set of basic 
psychological operations and following specific search-and-test methods of chain 
construction. Insofar as the model stated definite algorithms it would have the potential 
to account for protocols; as stage models the algorithms would also make quantitative 
predictions about the pattern of observed RT’s and error rates. Of course the particular 
theory of ASP problem solving outlined in this paper is not sufficient in itself to account 
for Hayes’ results such as the end-acceleration phenomenon: In addition, explicit 
algorithms would have to be constructed and demonstrated by computer simulation or 
by inferential data analysis to produce the observed pattern of results. 

The Stage Modeling Technique 

It is worthwhile to emphasize the positive aspects of stage modeling as a technique 
for the analysis of RT tasks. Interesting arguments related to those presented here have 
been given by Sternberg (1969b) with respect to the so-called additive factors method. 
First, as has been noted, considering psychological processes as procedures or sub- 
routines in the sense of a formal computer language provides an easily conceived 
unifying framework for theoretical analysis and a rationale for investigating memory 
mechanisms as they occur both in simple and complex laboratory tasks. Second, from 
a statistical standpoint, regression models for RT moments can be derived from a 
stages theory in a relatively simple manner, basically by counting the occurrences of 
stages. The parameters in the regression model have direct psychological interpretation 
in terms of real processing time, and the parameters can be estimated by common 
analytic or numerical methods irrespective of the number of classi&ation categories 
or the number of observations in each category. With regard to predictive power, 
stage models can provide accounts for RT momenta of all orders and together with 
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notions of processing variability defined at specific stages can at the same time provide 
an account of errors. Even though the technique is mathematically simple, the under- 
lying process representation is that of a quite general sequence of random variables 
(or random vectors) corresponding to the definition of a discrete stochastic process 
(viz., a family of random variables with a countable index set) with very few restrictions 
(e.g., most of the random variables can be assumed to be finite valued). This suggests 
that many models of memory processes will be at least formally “nearly” equivalent 
to some stage model as defined here. The nature of this equivalence can be formalized 
in terms of the partitioning of the event space of the experiment (i.e., the set of all 
possible data points) induced by the inverse mapping of the goodness of fit measure 
regarded as a random variable. 

Simple and Complex Tasks 

The algebra step problems introduced in this paper are, like other artificial memory 
and problem solving tasks, not advocated for their intrinsic interest but rather as one 
experimental paradigm for testing our understanding of human memory systems. Fast 
accurate problem solving has on the one hand clear theoretical relations to conceptions 
of basic memory mechanisms and the manner in which these mechanisms come to 
play in a larger memory system, and on the other hand it is a bridge to the chronometic 
analysis of more traditional problem solving tasks. While the investigation of simple 
tasks is indispensable it is surely necessary to develop theoretical constructions for more 
complex tasks with equal vigor: the chronometric analysis of tasks at the level of ASP 
problems is intended as one step in this direction. In philosophical perspective there 
is no assurance that even a detailed understanding of the models required to account 
for isolated simple memory tasks will automatically lead to an adequate conception of 
human memory systems that are capable of supporting such routine cognitive functions 
as the retrieval of propositional information (Anderson & Bower, 1973) or grade school 
arithmetic problems (Suppes, Loftus & Jerman, 1969). The data and analysis presented 
in this paper suggest that analysis of RT’s on the order of 5 set is feasible without 
undue loss of precision either in the conceptual model or the statistical treatment. 
Across experiments it should be possible to identify the characteristics of memory 
mechanisms as they occur in memory systems where processes involving alternative 
strategies, intermediate processing results and decisions about subsequent processing, 
and rapid access to large amounts of stored information are operating. Such a program 
of research has the potential to develop the basis for more exacting analyses of problem 
solving tasks in terms of an explicit theory of human memory, to elucidate the role of 
control and decision processes, and to qualify our understanding of memory mecha- 
nisms discovered through research on simple tasks. 
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STATISTICAL APPENDIX 

The coefficient vectors a = (aI ,..., a,) define a classification of observations into 
distinct categories under the model; 46 such classification categories were observed in 
the experiment (i.e., there were 46 distinct a vectors). The notation below will be used 
in what follows: the index 5” refers to the ith subject and ‘j,’ to thejth classification 
category. 

n number of classification categories under the model, 
S number of subjects, 

lVii number of observations, 

n/r,, RT sample mean, 

w, RT grand sample mean, 
Sij RT sample variance, 
T;$ sample variance of Sz” (see Kendall & Stuart, 1969). 

Parameter Estimation 

The approach taken to parameter estimation was to choose a loss function conceived 
of as a function of the parameters given the data, and to find parameter values that 
minimized this function. Since function minima were found using a numerical grid 
search method, computationally efficient quadratic (least squares) loss functions were 
chosen. Parameters were estimated for each subject individually. 

The actual estimation proceded in two steps. First, values of ei , qi , and ri were 
determined using the loss function 

Second, the parameter values, Ci , pi , ii , were treated as constant and vi estimated 
with the loss function 

An alternative procedure would have been to estimate simultaneously all parameters 
using a combined loss function of the form, 

Ls=wLs,+(1-w)Ls2, O<w<l. 

However, it was observed that the RT means showed a clearer pattern than the RT 
variances, so that estimates of the mean RT parameters “uncontaminated” by possible 
failures of the model for RT variances were considered appropriate. 
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Parameter estimates for individual subjects are listed in Table III. The numerical 
method used to estimate variance parameters excluded negative variances with one 
result that some parameters were estimated to be near zero (the loss function, LS, , 
would have been reduced had negative values been accepted for these parameters). 
An inherent problem in the analysis of RT variances is that for classification categories 
with small sample sizes, the variability of the sample variance, Stj , is large relative to 
that for the sample mean, Mij : Consequently, parameter estimates will also have large 
variability. Note that variance parameter estimates averaged across subjects are more 
readily interpretable as variability is reduced through averaging. 

Goodness of Fit Measures 

Consider the statistic defined for the ith subject and jth category by 

which for suitable models may be assumed to be approximately distributed as Student’s 
t under the hypothesis that the theoretical mean, a&r, is the true mean of the $h RT 
distribution. One method of evaluating the fit of the model to mean RT’s is to construct 
the smallest possible uniform simultaneous confidence region containing all the tij’s 
and to note the probability of the complement of the region. This probability is the 
minimum value of 01 (the probability of a type I error) for which the hypothesis that 
the model is true can be rejected; small values indicate that the model is probably 
not a full account of the mean RT data. If the distribution of tij is approximated by 
N(0, 1) instead of by Student’s t, a conservative bias is introduced in the sense that the 
value of E is necessarily reduced. Since the normal approximation simplifies the cal- 
culation of a simultaneous confidence region this assumption is adopted. 

For the ith subject define 

If the tij ‘s were independent, then for any positive number, c, 

Pr{t,* > c> = 1 - Pr{t,* < c} 

= 1 - fj Pr{-c < tij <: c} 
i=l 

= 1 - [Pr{-c < x < c}]~, 

where z N N(0, 1). This is the probability that for a fixed i all the tij’s are contained 
within a uniform, symmetric confidence band of width 2c. But for each i the tij’s are 
correlated through the estimation procedure, and with enough parameters it may be 
possible to obtain all the tij = 0, rendering the preceding probability statements 
meaningless. Accordingly, some conservative adjustment should be made taking into 
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account at least the number of free parameters, p. The choice for the present analysis 
was to take 

gi* = 1 - [Pr(-c < z < c}](“-p) 

in place of Pr{ta* > c} above. If ti* = c is observed, then gi* is a statistical measure 
of the fit of the model for the ith subject. Similarly, for a sample of s subjects define 

then 
g* = 1 - [Pr{-c < z < c}IS(+P) 

is a goodness of fit measure for the sample as a whole. This procedure is a type of 
multiple modulus test (Miller, 1966) referred to here as a “maximum modulus t test” 
with (n - p) or s(n - p) “degrees of freedom,” taking some licence with terminology. 

A related procedure can be followed in evaluating theoretical versus observed RT 
variances. The statistics defined by 

can be treated in the same manner as the tij’s above, although t& cannot be regarded 
as having Student’s t distribution and g* in this case ought to be taken as a trans- 
formation of the t$‘s reflecting goodness of fit rather than as an approximation to a 
true probability. 

To obtain a firmer statement about goodness of fit a second measure was sought. 
Although the model under consideration is not linear, the total sum of squares can be 
partitioned in such a way as to yield statistics reflecting the goodness of fit of the model 
to RT means in a way similar to the percentage of between variance accounted for and 
the sample correlation coefficient in linear regression. Define for any set of theoretical 
means, (fir}, for the ith subject: 

ML’, = SS(between) - i Nij(fij - M,# 
j=l 

- 2 / gl Nikfii - n/r,j)(hj - n/l,+> 17 

MVi’ = max(MVi , 0}, 

PBV, = 100 
MV,’ 

SS(between) ’ 

PTVi = 100 
MVi’ 

SS(tota1) . 
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If thefi,‘s were determined under a linear regression model using least squares 
estimation, then 

MV,’ = MV, = SS (linear regression). 

The results of the maximum modulus i, PBV and PTV analyses for RT means are 
presented in Table IV. Table IVA gives these statistics for the classification categories 
determined by the a vectors of the model; Table IVB represents the same analysis 
applied to the classification of Table I (problem type X position of false link). From 
Table IVA it is clear that the model accounts for a fair proportion of the variance 
(average PBV is 73.5 an d average PTV is 35.2), yet only two subjects have g* > .lO, 
which is a “reasonable” criterion for a good fit. Additional information about the 
maximum modulus t test is given by the number of points falling outside the .90 
confidence region; g* > .lO if and only if this number is zero. It should be noted that 
points which lie outside the confidence region are not necessarily those which the model 
fails to account for since when parameters are estimated simultaneously for all points 
an “exceptional” point can adversely influence the prediction for other “normal” 
points. For the group of six subjects the maximum modulus t test indicates that the 
model is true can be rejected for (II = .004. It should be noted that one bad data point 
for a single subject can be sufficient to reject the model for the group using the maxi- 
mum modulus t test; the proportion of subjects for which the model is not rejected is 
perhaps a more appropriate group statistic. In view of the all too common practice in 
the literature of presenting statistics for averaged group data, it is difficult to make a 
firm statement on this point based on the results of other comparable analyses. 

The analysis presented in Table IVB indicates a slightly better fit although it is 
derived from a less strict interpretation of the model. Some improvement is expected 
since more extensive averaging may cancel out effects not accounted for by the model 
and estimated error variance is increased slightly as observations with different means 
are pooled. However, this second classification does correspond to an intuitively natural 
division of the data. 

Table V presents an evaluation of the model’s success in accounting for RT 
variances. As remarked above the variance of Se is large for small sample sizes: for 
the experimental data this renders the maximum modulus t test uninteresting because 
for individual subjects the T&‘s are too large to reject any set of ballpark estimates for 
the variances. Variance predictions under the model were compared to the hypothesis 
that all the Sfj’s are the same, using the proportion of points better accounted for by 
the model (absolute differences between predicted and observed were compared). 
Referring to Table V, the model succeeds about as well as the “same” hypothesis for 
four subjects and does worse for the remaining two subjects’ data. This is not strong 
support for the model applied to RT variances but may be interpreted to mean that, 
compared to the “same” hypothesis, attempting to infer stage variances did not cost 
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much in the way of goodness of fit, while at the same time the model’s predictions 
cannot be rejected given the variability of the SFi estimates. 
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